|本期目录/Table of Contents|

[1]李兆亮,柳金城,王琳,等.基于神经网络的复杂储层流体分级识别[J].断块油气田,2020,27(04):498-500.[doi:10.6056/dkyqt202004018]
 LI Zhaoliang,LIU Jincheng,WANG Lin,et al.Fluid hierarchical identification of complex reservoir based on neural network method[J].Fault-Block Oil and Gas Field,2020,27(04):498-500.[doi:10.6056/dkyqt202004018]
点击复制

基于神经网络的复杂储层流体分级识别(PDF)
分享到:

《断块油气田》[ISSN:1005-8907/CN:41-1219/TE]

卷:
27
期数:
2020年04
页码:
498-500
栏目:
默认栏目
出版日期:
2020-07-25

文章信息/Info

Title:
Fluid hierarchical identification of complex reservoir based on neural network method
作者:
李兆亮1柳金城1王琳1陈晓冬1石金华2姜明玉1
1.中国石油青海油田分公司勘探开发研究院,甘肃 敦煌 736202;2.中国石油青海油田分公司油田开发处,甘肃 敦煌 736202
Author(s):
LI Zhaoliang1 LIU Jincheng1 WANG Lin1 CHEN Xiaodong1 SHI Jinhua2 JIANG Mingyu1
1.Research Institute of Exploration and Development, Qinghai Oilfield Company, PetroChina, Dunhuang 736202, China; 2.Oil Development Department, Qinghai Oilfield Company, PetroChina, Dunhuang 736202, China
关键词:
流体识别低电阻率油层复杂储层神经网络
Keywords:
fluid identification low resistivity oil layer complex reservoir neural network
分类号:
-
DOI:
10.6056/dkyqt202004018
文献标志码:
A
摘要:
YD油田具有束缚水饱和度高、地层水矿化度高、黏土矿物含量高、油气水分布规律复杂,以及无统一油气水界面的特征,储层中不同流体的测井响应特征区别不明显,采用常规测井图版无法准确识别油层、气层、油气层,以及低电阻率油层。文中通过选择相关性强的测井参数,应用神经网络建立分级解释模型,实现了对复杂储层中不同流体的自动化、准确识别。研究结果表明,基于神经网络的储层流体分级识别技术,成功识别了油层、气层、油气层,以及低电阻率油层,解决了复杂储层的流体识别问题,并成功应用于YD油田开发。
Abstract:
With the characteristics of high irreducible water saturation, high-salinity formation water, high clay content, complex distribution regularity of oil, gas and water, no uniform oil/gas/water contact, and no obvious logging response characteristics in the complex reservoir in YD oilfield, conventional logging identification methods are impossible to accurately distinguish oil layer, gas layer, oil and gas layer, and low resistivity oil layer. Selecting highly-correlated well logging parameters, and applying neutral network method to hierarchical identification of complex reservoir, the reservoirs fluids can be identified automatically and accurately. The study shows that fluid identification technology of complex reservoir based on neural network successfully identified the layers of oil, gas, oil and gas, and low resistance oil, and solved fluid identification problem of complex reservoir and it was applied to YD oilfield development successfully.

参考文献/References:

相似文献/References:

[1]苗大军,张海英,韩木森,等.低电阻率油层在濮城油田的认识与应用研究[J].断块油气田,2002,09(02):64.
 Miao Dajun,Zhang Haiying,Han Musen,et al.The Analyses and Application of Low Resistivity Reservoirs in Pucheng Oilfield[J].Fault-Block Oil and Gas Field,2002,09(04):64.
[2]蔡秋龙.东营凹陷低电阻率油层地质主控因素分析[J].断块油气田,2007,14(05):24.
 Cai Qiulong.Primary geologic origins analysis on low resistivityzone in Dongying Depression[J].Fault-Block Oil and Gas Field,2007,14(04):24.
[3]王俊骏,桂志先,谢晓庆,等.苏里格气田储层识别敏感参数分析及应用[J].断块油气田,2013,20(02):175.[doi:10.6056/dkyqt201302010]
 Wang Junjun,Gui Zhixian,Xie Xiaoqing,et al.Analysis and application of sensitive parameters of reservoir identification in Sulige Gas Field[J].Fault-Block Oil and Gas Field,2013,20(04):175.[doi:10.6056/dkyqt201302010]
[4]王志强.DJ油田Q段复杂储层流体识别[J].断块油气田,2013,20(03):329.[doi:10.6056/dkyqt201303014]
 Wang Zhiqiang.Identification of complicated reservoir fluid in Member Q of DJ Oilfield[J].Fault-Block Oil and Gas Field,2013,20(04):329.[doi:10.6056/dkyqt201303014]

备注/Memo

备注/Memo:
更新日期/Last Update: 2020-07-24