|本期目录/Table of Contents|

[1]李政宏,刘永福,张立强,等.数据挖掘方法在测井岩性识别中的应用[J].断块油气田,2019,26(06):713-718.[doi:10.6056/dkyqt201906007]
 LI Zhenghong,LIU Yongfu,ZHANG Liqiang,et al.Application of data mining method in lithology identification using well log[J].Fault-Block Oil and Gas Field,2019,26(06):713-718.[doi:10.6056/dkyqt201906007]
点击复制

数据挖掘方法在测井岩性识别中的应用(PDF)
分享到:

《断块油气田》[ISSN:1005-8907/CN:41-1219/TE]

卷:
26
期数:
2019年06
页码:
713-718
栏目:
地质勘探
出版日期:
2019-11-25

文章信息/Info

Title:
Application of data mining method in lithology identification using well log
作者:
 李政宏1刘永福2张立强1赵海涛2陈曦3李昊东4
 1.中国石油大学(华东)地球科学与技术学院,山东 青岛 266580;2.中国石油塔里木油田公司勘探开发研究院,新疆 库尔勒 841000;
3.帝国理工学院地球科学与工程系,伦敦 SW72AZ;4.中国石油大港油田公司第二采油厂,天津 061103)
Author(s):
 LI Zhenghong1 LIU Yongfu2 ZHANG Liqiang1 ZHAO Haitao2 CHEN Xi3 LI Haodong4
 1.School of Geosciences, China University of Petroleum, Qingdao 266580, China; 2.Research Institute of Exploration and Development, Tarim Oilfield Company, PetroChina, Korla 841000, China; 3.Imperial College London, London SW72AZ, U.K.;
4.No.2 Oil Production Plant, Dagang Oilfield Company, PetroChina, Tianjin 061103, China
关键词:
岩性识别数据挖掘多元统计算法智能性算法测井数据
Keywords:
lithology identification data mining multivariate statistical algorithm intelligent algorithm logging data
分类号:
TE121.3;P628
DOI:
10.6056/dkyqt201906007
文献标志码:
A
摘要:
 测井岩性识别是油气藏勘探开发的重要基础工作。随着计算机技术的发展,数据挖掘方法越来越多地应用于岩性识别以提高预测准确性。数据挖掘方法可归纳为多元统计算法和智能性算法两大类,其中多元统计算法包括主成分分析、判别分析,智能性算法有神经网络、决策树、支持向量机。目前多元统计算法在测井岩性识别中应用广泛,智能性算法的应用尚处于发展阶段。基于大量文献调研的成果,概述了多元统计算法的原理及应用现状,重点梳理智能性算法的理论和优势,提出在应用智能性算法时需要将测井数据预处理,包括测井参数选择、测井数据归一化和降维。在此基础上,通过实例验证了智能性算法的应用效果,认为这是测井岩性识别领域今后的发展方向。
Abstract:
 Logging lithology identification is an important foundation work for oil and gas reservoir exploration and development. With the development of computer technology, data mining methods are increasingly applied to lithology identification to improve prediction accuracy. Data mining methods can be summarized into two categories: multivariate statistical algorithms and intelligent algorithms. Multivariate statistical algorithm includes principal component analysis and discriminant analysis. Intelligent algorithm includes neural networks, decision trees, and support vector machines. At present, multivariate statistical algorithms are widely used in logging lithology identification, and the application of intelligent algorithms is still in the development stage. Based on the results of a large number of literature research, the principle and application status of multivariate statistical algorithms are summarized, and the theory and advantages of intelligent algorithms are summarized. It is proposed that the logging data needs to be preprocessed when applying the intelligent algorithm, including logging parameter selection, logging data normalization and logging data dimensionality reduction. On this basis, the application of intelligent algorithm is verified by examples as the future development direction of logging lithology identification.

参考文献/References:

相似文献/References:

[1]庄东志,周凤鸣,司兆伟,等.南堡5号构造深层火山岩岩性测井识别技术[J].断块油气田,2011,18(06):743.
[2]李 华,刘 帅,李 茂,等.数据挖掘理论及应用研究[J].断块油气田,2010,17(01):88.
 Li Hua  Liu Shuai  Li Mao  Liu Shuangqi.Theory and application of data mining[J].Fault-Block Oil and Gas Field,2010,17(06):88.
[3]刘 晓,方锡贤,牛书立.PDC 钻头钻进条件下录井方法探讨[J].断块油气田,2002,09(04):26.
 Liu Xiao,Fang Xixian,Niu Shuli.Logging Methods While Drilling With PDC Bit[J].Fault-Block Oil and Gas Field,2002,09(06):26.
[4]张常德,祁国君,刘立奇.白音查干凹陷有效储集层识别标准研究[J].断块油气田,1999,06(05):20.
[5]王拥军 周雪峰 吴海忠 周 虎 葛百成.火山岩岩性识别新技术 [J].断块油气田,2006,13(03):86.
[6]崔晓娟.欧利坨子地区火山岩储层测井评价[J].断块油气田,2008,15(04):54.
 Cui Xiaojuan..Well logging evaluation of the volcanic reservoirs in Oulituozi Area of Liaohe Basin[J].Fault-Block Oil and Gas Field,2008,15(06):54.
[7]杨明合袁 翟应虎 夏宏南.数据挖掘技术在钻头优选中的应用[J].断块油气田,2007,14(06):60.
 Yang Minghe,Zhai Yinghu,Xia Hongnan,et al.Application of data mining technology in bit selection[J].Fault-Block Oil and Gas Field,2007,14(06):60.
[8]杨福成,光兴毅,张放东,等.锡林好来地区复杂储层测井综合识别及应用[J].断块油气田,2013,20(02):268.[doi:10.6056/dkyqt201302035]
 Yang Fucheng,Guang Xingyi,Zhang Fangdong,et al.Logging comprehensive identification and application of complex reservoir in Xilinhaolai Area[J].Fault-Block Oil and Gas Field,2013,20(06):268.[doi:10.6056/dkyqt201302035]
[9]刘毅,陆正元,吕晶,等.主成分分析法在泥页岩地层岩性识别中的应用[J].断块油气田,2017,24(03):360.[doi:10.6056/dkyqt201703014]
 LIU Yi,LU Zhengyuan,LYU Jing,et al.Application of principal component analysis method in lithology identification for shale formation[J].Fault-Block Oil and Gas Field,2017,24(06):360.[doi:10.6056/dkyqt201703014]
[10]冯冲,王清斌,王立红,等.莱州湾凹陷垦利16-A构造火山岩岩性特征与测井识别[J].断块油气田,2018,25(03):316.[doi:10.6056/dkyqt201803009]
 FENG Chong,WANG Qingbin,WANG Lihong,et al.Lithologic characteristics and logging identification of Mesozoic volcanic rock of Kenli 16-A Structure in Laizhouwan Depression[J].Fault-Block Oil and Gas Field,2018,25(06):316.[doi:10.6056/dkyqt201803009]

备注/Memo

备注/Memo:
更新日期/Last Update: 2019-11-22